

Aspects of land surface hydrology in the NMME

Huug van den Dool and Emily Becker Climate Prediction Center (CPC)

Acknowledgements: Qin Zhang, Suranjana Saha, Malaquias Pena and many others.

Lets talk SST

- Suppose we know that the Pacific SST has an impact over the US. How do we take predictive advantage of that knowledge in a modeling approach?
- Make sure the model has the appropriate mechanisms
- Make sure we initialize models correctly
- Let us thank Nature for providing such things as El Nino and La Nina for our test grounds
- Now apply the above to the land surface

	Hindage) 1		Model resid						
	Hindcast	Situation	LICAL	\ 1		Resolutions				
	Start months available NOW	Period	Members	Arrangement of Members	Lead (months)	Atmosphere	Ocean	Reference		
NCEP- CFSv1	12	1981- 2009	15	1st 0Z +/-2days, 11th 0Z+/-2d, 21st 0Z+/-2d	0-9	T62L64	MOM3L40 0.30 deq Eq		NCEP- CFSv1	
NCEP- CFSv2	12	1982- 2010	24(28)	4 members (0,6,12,18Z) every 5th day	0-9	T126L64	MOM4 L40 0.25 deg Eq	Saha et al	NCEP- CFSv2	
GFDL- CM2.1	12	1982- 2010	10	All 1st of the month 0Z	0-11	2x2.5deg L24	MOM4 L50 0.25 deg Eq	Delworth et al 2006	GFDL- CM2.1	
IRI- Echam4-f	12	1982- 2010	12	All 1st of the month**	0-7	T42L19	MOM3 L25 0.5 deg Eq		IRI- Echam4-f	
IRI- Echam4-a	12	1982- 2010	12	All 1st of the month**	0-7	T42L19	MOM3 L25 0.5 deg Eq	"	IRI- Echam4-a	
NCAR- CCSM3.0	12	1982- 2010	6	All 1st of the month**	0-11	T85L26	POP L40 0.3 deg Eq	Kirtman and Min 2009	NCAR- CCSM3.	
NASA	12	1981- 2010	6	1 member every 5th day as CFSv2	0-9	1x1.25deg L72	MOM4 L40 0.25 deg Eq	Rienecker et al 2008	NASA	

	Hindcast Situation YEAR 2					Model resident Resolutions				
		months able NOW	Period	Members	Arrangement of Members	Lead (months)	Atmosphere	Ocean	Reference	
NCEP- CFSv1	12		1981- 2009	15	1st 0Z +/-2days, 11th 0Z+/-2d, 21st 0Z+/-2d	0-9	T62L64	MOM3L40 0.30 deq Eq	Saha et al 2006	NCEP- CFSv1
NCEP- CFSv2	12		1982- 2010	24(28)	4 members (0,6,12,18Z) every 5th day	0-9	T126L64	MOM4 L40 0.25 deg Eq	Saha et al 2010	NCEP- CFSv2
GFDL- CM2.1	12		1982- 2010	10	All 1st of the month 0Z	0-11	2x2.5deg L24	MOM4 L50 0.30 deg Eq	Delworth et al 2006	GFDL- CM2.1
CMC1- CanCM3	12		1981- 2010	10	All 1st of the month 0Z	0-11	CanAM3 T63L31	CanOM4 L40 0.94 deg Eq	Merryfield et al 2012	CMC1
CMC2- CanCM4	12		1981- 2010	10	All 1st of the month 0Z	0-11	CanAM4 T63L35	CanOM4 L40 0.94 deg Eq	Merryfield et al 2012	CMC2
NCAR- CCSM3.0	12		1982- 2010	6	All 1st of the month**	0-11	T85L26	POP L40 0.3 deg Eq	Kirtman and Min 2009	NCAR- CCSM3.0
NASA	12		1981- 2010	6	1 member every 5th day as CFSv2	0-9	1x1.25deg L72		4 Rienecker et al 2008	NASA

Land surface hydrology

• Do we have the mechanism for feedback onto the atmosphere in these models?

• Do we know how to initialize in particular cases?

- 1-mon lagged correlation between precip and temp turns out to be negative
- Dry July → warm Aug; Wet July → cool Aug

Huang &VdDool paper 1993 paper: CD data 1931-1987

Monthly Precipitation-Temperature Relations and Temperature Prediction over the United States

JIN HUANG AND HUUG M. VAN DEN DOOL

Climate Diagostics and Prediction Workshop College Park, MD

Workshop College Park, MD

Soil Moisture as Initial Condition in NMME

- SM is one of the 5 extra phase I variables. SM is advertised to matter for seasonal prediction in the warm half of the year.
- Have yet to agree on units in practice
- Real time display in place (May starts)
- IC=about May 1, 2013.
- Forecast refers to June 2013

We borrow the color coding from CPC Leaky Bucket's SM.

These are anomalies in mm. Anomaly is a matter of historical perspective. Climo=1981-2010. Typically ~50mm.

Conclusions

- Most models appear to feed back onto surface air temperature (via evaporation) with the correct sign and seasonality, but somewhat stronger than 'nature'.
 GFDL much too strong.
- Almost all models (CFSv2 especially) have major problems initializing soil moisture anomalies.
- 1+2: We have a long way to go to take advantage of any surface hydrology related predictability (such as it is).
- And by the way: there is no ENSO as test case in hydrology.

For your one stop shopping for NMME and IMME products, visit

http://www.cpc.ncep.noaa.gov/products/NMME/

1800 jpegs a month!

Definitions and Data

- AC of ensemble averaged monthly means
- GHCN-CAMS (validation for Tmp2m)
- CMAP (validation for Prate)
- OIv2 (validation for SST)
- 1982-2009 (28 years)
- Common 2.5 degree grid
- Variables/areas studied: US T, US P, global and Nino34 SST, global and Nino34 Prate.
- <u>A split climatology</u>: Two climos used for all variables within tropics

30S-30N: 1982-1998 and 1999-2009

Elsewhere: 1982-2009

Definitions and Data

- Anomaly Correlation of ensemble averaged monthly means
- Variables/areas studied: global SST, Precipitation and land 2-meter temperature.
- GHCN-CAMS (validation for T2m)
- CMAP (validation for Prate)
- QD-OISST (validation for SST)
- 1982-2009 (28 years)
- Common 1.0 degree grid